Complex number for biologist
Contents
A biologist like me might have never had a numerical computing training. I don’t even known what a complex number really means. Here are some useful basics to keep in mind.
Complex number
complex number $a+bi$ lives in a 2d complex plane
, including
- real axis: $a$
- imagnary axis: $i$
orthognal
to real axis- $i \rightarrow 90 \degree \text{rotation}$
2 ways of representation
- $z = a + bi$
- $z = r \cos(\phi) + r \sin(\phi) i = r e^{i \phi}$
3 Facts about Multiplication
- $z \cdot 1 = z$
- $z \cdot i = \operatorname{Rot90}(z)$
- e.g. $i \cdot i = -1$
- $z \cdot ( c + di) = c \cdot z + d \cdot (zi)$
- e.g. $(2+i)(2-i) = 2 \cdot 2 + 2i -2i - i^2 = 5 + 0i$
expotential
form: $$ \exp (i \theta)=1+i \theta+\frac{(i \theta)^{2}}{2}+\frac{(i \theta)^{3}}{6}+\frac{(i \theta)^{4}}{24}+\cdots $$
derivative:
$$ \frac{d}{d t} e^{i t}=i \cdot e^{ i \cdot t} $$
$$ i^n \cdot i^k = i^{n+k} $$
expotential form to find complex roots
Example: